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COMPUTATIONAL 
METHODS:
QUANTUM MECHANIC,
MOLECULAR DYNAMICS
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Tight-binding method
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The phenomenon energy
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The TB parameters 
for carbon nanoclusters 
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The Hamiltonian
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The interaction of P-orbitals
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The rehybridization
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The electron spectra 
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To describe the intermolecular interaction the van der Waals potential was added in to the 

system energy (1). The van der Waals potential is given as the Lennard-Jones potential 
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where 42.1  is a length of the C-C bond, 7.2y0   and 679 mJ103.24A    are empirically 

chosen parameters (Qian D., Liu W. K., and Ruoff R. S. (2003) C. R. Physique 4: 993-100). 

However, the Lennard-Jones potential is incorporated only if the phenomenon intermolecular 

energy becomes zero (at distance about 0.25 nm for the carbon-carbon interaction).  

The motions of the atoms are determined by the classical MD method where Newton’s 

equations of motion are integrated with a third-order Nordsieck predictor corrector. Time steps of  

0.15–0.25 fs were used in the simulations. The forces on the atoms were calculated using TB 

method.  



To research the nanoribbons using tight-binding potential our own
program was used. Our own program provides the calculation of the
total energy of nanostructures, which consist of 500-5000 atoms. We
have adapted our TB method to be able to run the algorithm on a parallel
computing machine (computer cluster).

During consideration of the algorithm we can note two points:

solution of eigenvalues problem and, possibly, eigenvectors problem for
the M*NxM*N matrix - one-electron Hamiltonian (N is the number of
atoms, M is maximum number of valence electrons);

- solution of optimization problem – the total system energy
minimization.

It's necessary to consider the available computing power.

We have a number of dual-processor servers which are the distributed
SMP-system. MPI (stands for Message Passing Interface) was chosen
as mechanism for implementing parallelism.
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NANODEVICES: 
MATHEMATICAL MODELS

Nanoreactor (nanoautoclave)

Dimerization of miniature C20 and C28 fullerenes in 
nanoautoclave
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In our nanoautoclave model a closed single-wall carbon nanotube (10,10) 740C  is represented as 

a capsule that is  closed from both ends with  240C  fullerene caps. The pressure is controlled by a 

shuttle-molecule encapsulated into a nanotube that may move inside the tube. In the present case a 

shuttle-molecule is the C60 fullerene. The shuttle must have some electric charge for its movement 

to be controlled by an external electric field. The positively charged endohedral complex K
+
@C60 

(the ion of potassium inside the fullerene C60) is a shuttle-molecule in the present model of the 

nanoautoclave. So, the hybrid compound 74060 tubeC@C@K  is a nanoautoclave model. The 

74060 tubeC@C@K  nanoparticle is located between two electrodes connected with a power 

source. Changing the potentials at the electrodes, we control the movement of the 60C@K  

fullerene. 
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At the start moment, the mutual positions of all nanoautoclave 

components correspond to the ground state 
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When the pressure created in the tube provides both the overlap of  -electrons of the nC  

fullerenes (that corresponds to the interatomic distance of about 1.9 Å) and the covalent bonds 

formation, the intermediate phase of the  
2nC  dimer is synthesized:    55C

220   (at 20n  ) or 

   66C
228   (at 28n  ). Here a number of fullerene atoms participating in the intermolecular 

bonds formation is shown in square brackets. Figure shows a stable dimer of the 20C  ( 28C ) 

fullerene and the 60C  molecule that suffered a certain deformation.  
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The structure of stable dimers with the 

horizontal symmetry plane, symmetry 

axes, and the plot of electron states 

density are shown in Figure. 
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Characteristics of stable fullerenes dimers 

Dimer Symmetry 

group of 

the dimer 

maxmin rr , 

Å 

D , Å 
bE , eV H , 

atommol

kcal


 

gE , eV 

 

HOMO, 

eV 

   22C
220   D2h 1.43/1.62 1.65 6.44 -5.01 0.66 7.00 

   11C
228   C2h 1.41/1.56 1.56 6.57 -2.07 0.14 7.16 
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At the moment of the covalent bonds formation, the pressure is calculated according to 

the energy repvdWer EEE int . The potential difference at the electrodes   that provides 

the pressure necessary for the dimerization is calculated according to the relationship 

 eE erint , where erEint  is a potential barrier overcome by the 60C fullerene when it 

goes from the well (the area of the tube end) to the position providing the dimer 

formation. The strength is calculated as L , where a distance L  is taken to be equal to 

the capsule length added to value of 3.4 Å (closing the capsule to electrodes by a less 

distance may cause sticking due to Van-der-Waalse interaction).  

 

 

The energy of the 60C  fullerene and parameters of the outer field necessary for the  
2nC  

dimer synthesis 
 

2nC   1Einter , eV nteriE , eV  , V F , V/m 

   22C
220   -3.574 5.42 8.90 0.18 810  

   11C
228   -3.574 6.50 10.16 2 810  

 



Graphene: 
electron properties
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With increasing of the 
number of atoms the 
nanoribbon becomes 

stable (finite size effect) 



Density of 
Mulliken charge 
of carbon atoms 
of nanoribbon
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Scroll of nanoribbon (finite size effect) 
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The dependency of IP on the nanoribbon length
(finite size effect) 
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IP of nanoribbons
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Energy gap of nanoribbons

Saratov State University, Russia 30



Defected nanoribbons
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GRAPHENE:
MECHANICAL 
PROPERTIES
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Multicsale modeling to investigate the 
mechanical properties
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Study of deformations and elastic properties of 
nanoparticles and nanoribbons was implemented 

on the following algorithm
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Young’s pseudo-modulus (Y2D) of 
nanoribbons. Y3D =Y2D *0.34 nm
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Two-
dimensional

Young’s 
modulus 
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Strain energy of nanoribbons 
undergoing axial tension
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Nanoribbon undergoing axial compression
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Dependence of strain energy on the 
relative compression nanoribbons
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The curve of the strain energy collapse occurs at the axial compression 0.03-
0.04. Plane atomic network undergoing axial compression becomes wave-like.
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Dependency of the strain energy on the 
relative compression nanoparticles
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THE INFLUENCE OF 
A CURVATURE  
ON THE PROPERTIES 
OF NANORIBBONS
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Research of the local stress field of the atomic grid of 
graphene nanoribbons and prediction of the 

appearance of defects in compression process 
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The compression of defected 
nanoribbons
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The distribution of the local stress in 
atomic network 
(the compression 20 %)
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The absorption of H-atom 
on the atomic network 
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The total energy of 
the structure depends on the 

distance between the 
hydrogen atom and the 

carbon atom.
(The  dashed line is the interaction of the 

hydrogen atom with planer 
graphene nanoribbon; the 

solid line is the interaction of the 
hydrogen atom from wave-like 

graphene nanoribbon )
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THE ELECTRON AND 
MECHANICAL 
PROPERTIES OF THE 
MODIFIED GRAPHENE 
NANORIBBONS 
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Graphane
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The electron properties
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Parameters of elasticity 
of graphane-nanostructures 
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