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COMPUTATIONAL
METHODS:
QUANTUM MECHANIC, g
MOLECULAR DYNAMICS £ = .
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Tight-binding method

The TB method was earlier implemented to study

a stability of carbon. The energy of a system of ion
cores and valence electrons is written as

Emr — EE]G'H{IF —I_E?'E?P' (1)
Here the term Epgpgq 15 the bond structure energy

that is calculated as the sum of energies of the
single-particle occupied states. Those single-particle
energies are known by solving the Schrodinger
equation

Hly )=¢,|wy), (2)

where H is the one-electron Hamiltonian, g,is the
energy of the nth single-particle state.
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The wave functions |w ) can be approximated by
linear combination

| W}i> — Eq}; | (plll>-r {3}

where {pjy} is an orthogonal basis set, [ is the
quantum number index and o labels the ions.
This approximation is known as the method LCAO —
linear combination of atomic orbits.

For example, the one-electron wave function of

the compound C, is given by the combination of the

wave functions ‘S>J |pﬁ>, |pff">, ‘p3> ;

n 2n in 4n
=26 |s)+ Ze [P+ T 6P+ Zalp)

Sn v
N is the number of atoms. Zl_

X
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For the tight-binding Hamiltonian, we use the
Slater—Koster parameterization scheme for the
electronic hopping matrix elements.

The equilibrium hopping integral is

Vop ={(@rp | H| @1,

To describe the influence of environment on
each atom we have included the scaling function. So,

the matrix elements are calculated as (L. Goodwin, A T.
Skinner, and D. G. Pettifor, Europhys.Lett. @ (19803 701.)

p Fal - P4 p 24
V. (r) = Vmﬁﬁ[ 3] exps p,| — [—} +{ : ] ,
r P P-

(4)

where r is the distance between atoms.
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The scaling function is known as_the function of
the two-center TB matrix element between two
orbitals of symmetry | and I’ placed on the atoms «
and B. The parameter p, is equal the equilibrium
interatomic distance. If the interatomic distance
becomes equal the equilibrium distance the function
s equal “1”.

Once that the single-particle energies are known
by solving the secular problem (2).

Noccupied
Ebﬂﬁd =2 2 €n

=1

Here “2"” considers the electron spin.
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The phenomenon energy

Term E,., in Eq(1) is the phenomenon energy

that is a repulsive potential. It can be expressed as a
sum of two-body potentials as

Erep= Z vrep(raﬁJ: (5)

oLp) o

where E*'mp s pair potential between atoms at «

and p. This two-body potential describes an
interaction between bonded and nonbonded atoms.

The values of the parameters?iﬁ, the atomic terms

and p, for carbon compounds are given in table.
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The repulsive pair potential is calculated by
formula:

Ps P P.
Vrep(r)=ps(p—3) eXP{P6 —[LJ +{p—3J
r P2 P2
(6)

All parameters that define the phenomenon
energy and were fitted from experimental data for
fullerenes and carbon nanotubes.

Transferability to other carbon compounds was
tested by comparison with ab initio calculations and
experiments. Our parametrization provides the
investigations of all modifications of carbon
nanostructures. That provides also the study the
molecular clusters, finite size structures with sp?,
2+4A 3

sp2, sp’.
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for carbon nanoclusters

The TB parameters

Table 1
es.eV | EpeV|ve eV Vess | Ve |y eV
S P 50/ EV EV FEL S

-10,932 | -5,991 | -4,344 | 3,969 | 5,457 | -1,938
P1 Pz, A Ps, A Py ps, eV Ps
2,796 2,32 1,54 22 10,92 | 4,455

transferable
correctly
configuration as a function of the local bonding
geometry around each carbon atom.

Our tight-binding potential can

reproduce changes in the electronic
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The Hamiltonian

51 52 53 Py1 Py2 Pya Py1 P
St €y Vo Ve 0 Vipe Vipe 0 Vipo
S2 Vew € Ve Vo 0 Vo Vo Ve
S| Ve | Ve & | Voo | Ve 0 Ve 0
Px 1 0 I’F.—,p.g F;pa Ep Fpp F}Jﬁ' 0 FPP
P2 Vero 0 Vo Fpp p Fpp Fpp FPP
Px3 F:.ua F:pa 0 Fw If.ﬂ,ﬂ E‘P Fpp 0
P, 0 V., v, 0 v, v, & v,
P23 I’i—,::.; I’?:pa 0 Fpp Fpp 0 FPP E’F‘




The interaction of P-orbitals

Fig. 1. Schematic representation of the interaction
of P.- and P,- orbital.

All s- and P-orbitals are given in the real Cartesian co-
ordinates system. To correctly reproduce changes in the
electronic configuration of the local bonding geometry
around each atom we have defined P-orbital as the axial
vector. Each axial vector makes the angle with an direction
Rij (a, B, 8 ) and may be written as the geometrical sum of
the two vectors:

—

P _PZD +PZJ_

Here f’XD, ﬁyDr f)zD are projections to an iteratomic

direction, f)XJ_ .. are projections to an orthogonal
direction.

So, to describe the interaction between P; and Py (see
Fig.) we must write:
f)x f’ f)XD pth + f’KJ_ 'ﬁzi (8)

o - bonding m-bonding
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Angle between projections ED and F’zD is equal to zero, but an

angle between projections to an orthogonal direction is not zero and
it is equal to y (see Fig.). As a result of some mathematical
transformations we can write the expressions for cosy and the energy
of the interaction between P; and Py:

COsCL-cos©
COSY =—

. . r
sino.-smno

V- £:)=V? (r:)-coso-cosB+ V™ (1::)-sin o-sin B-cosy =
PxPA 1_]) PxPz( 1_]) 2Py ( 1_]) |

) . -cosB
=V (1) -cosa-cosf+ V" (1jj)-sino-sin®- _LOSreosh) _
PPz PiPz sinaot-sin

=cosa-cosB| VO (1) -V" r-]
A Ve, @)~V @)
(10)

Fig. 2. Projections of P,- and P,- vectors.
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H'|PZ As well known, the expression for the
| energy of the interaction between S and P-
| Y orbitals can be defined very simple:

Vspz (1) = V° (1) -cosO
SPz

(11)

X

Fig. 3. Schematic representation of the interaction
of P.- and S- orbitals.
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The rehybridization

Presented scheme to reproduce the
electronic configuration and the local
bonding geometry around each atom
provides the consideration and calculation
of the rehybridization between o- and rt-
orbitals. In Figure 4 we can see that the

h‘- rehybridization ' atom is in sp? hybridization becomes that

. | — _ ' in sp™ hybridization because of a
9 curvature of the topological network.

Degree of rehybridization is defined on

the pyramidalization angle. This angle is
calculated on formula:

0, =057

Angle B85y is presented as shown in Fig. 4.

r-orbital axis vector makes equal angles to
the o-bonds at a conjugated carbon atom.
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The electron spectra

So, the presented transferable tight-binding potential and the described scheme to reproduce
the electronic configuration and the local bonding geometry around each atom are well suited for
computer simulations of covalently bonded systems in both gas-phase and condensed-phase
systems.

We have tested our scheme by comparison with experiments for fullerene and some carbon
nanotubes. In the table the spectra of the m-orbitals and density of states are presented.

Results are inresonable agreement with experimental data.
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To describe the intermolecular interaction the van der Waals potential was added in to the

system energy (1). The van der Waals potential is given as the Lennard-Jones potential

Evow = Z A [E 0 = 1 ) (12)

oc,l3>a§ 2 Yo (raB/G)lz ) (raB/G)G

where =142 is a length of the C-C bond, y, =2.7 and A=24.3-10"°J-m°® are empirically
chosen parameters (Qian D., Liu W. K., and Ruoff R. S. (2003) C. R. Physique 4: 993-100).

However, the Lennard-Jones potential is incorporated only if the phenomenon intermolecular
energy becomes zero (at distance about 0.25 nm for the carbon-carbon interaction).

The motions of the atoms are determined by the classical MD method where Newton’s
equations of motion are integrated with a third-order Nordsieck predictor corrector. Time steps of
0.15-0.25 fs were used in the simulations. The forces on the atoms were calculated using TB

method.



To research the nanoribbons using tight-binding potential our own
program was used. Our own program provides the calculation of the
total energy of nanostructures, which consist of 500-5000 atoms. We
have adapted our TB method to be able to run the algorithm on a parallel
computing machine (computer cluster).

During consideration of the algorithm we can note two points:

solution of eigenvalues problem and, possibly, eigenvectors problem for
the M*NxM*N matrix - one-electron Hamiltonian (N is the number of
atoms, M is maximum number of valence electrons);

- solution of optimization problem - the total system energy
minimization.
It's necessary to consider the available computing power.

We have a number of dual-processor servers which are the distributed
SMP-system. MPI (stands for Message Passing Interface) was chosen
as mechanism for implementing parallelism.



Nanoreactor (nanoautoclave)

Dimerization of miniature C,, and C,4 fullerenes in
nanoautoclave

NANODEVICES:
MATHEMATICAL MODELS



In our nanoautoclave model a closed single-wall carbon nanotube (10,10) c,,, is represented as
a capsule that is closed from both ends with C,,, fullerene caps. The pressure is controlled by a

shuttle-molecule encapsulated into a nanotube that may move inside the tube. In the present case a
shuttle-molecule is the Cgo fullerene. The shuttle must have some electric charge for its movement
to be controlled by an external electric field. The positively charged endohedral complex K*@Cso

(the ion of potassium inside the fullerene Cgp) is a shuttle-molecule in the present model of the

nanoautoclave. So, the hybrid compound K* @ C,, @ tubeC,,, is a nanoautoclave model. The
K" @C,, @tubeC,,, nanoparticle is located between two electrodes connected with a power

source. Changing the potentials at the electrodes, we control the movement of the K™ @C,,

fullerene.

C a0 ' -

18, O o
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At the start moment, the mutual positions of all nanoautoclave
components correspond to the ground state

Saratov State University, Russia

20



When the pressure created in the tube provides both the overlap of =-electrons of the C,
fullerenes (that corresponds to the interatomic distance of about 1.9 A) and the covalent bonds

formation, the intermediate phase of the (C,), dimer is synthesized: (CZO)2 [5+5] (at n=20) or
(CZS)2 [6+6] (at n=28). Here a number of fullerene atoms participating in the intermolecular
bonds formation is shown in square brackets. Figure shows a stable dimer of the C,, (C,)

fullerene and the C, molecule that suffered a certain deformation.

Saratov State University, Russia
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£ 2.8
(Ca0)2 [2+2] £ 2|2 The structure of stable dimers with the
ngfz:; 3N f\]\ﬂf\f \“/ horizontal symmetry plane, symmetry
e L axes, and the plot of electron states

Fimi Energy, eV
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Characteristics of stable fullerenes dimers

Dimer Symmetry | r. /., | D,A |E,eV | aH, |E, eV |HOMO,
group of A keal eV
mol - atom
the dimer
(Cao)[2+2] D,y 1.43/1.62| 1.65 | 6.44 | -5.01 0.66 7.00
(Cas),[1+1] Con 1.41/1.56| 1.56 6.57 -2.07 0.14 7.16

Saratov State University, Russia
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At the moment of the covalent bonds formation, the pressure is calculated according to
the energy E,.. =E,w+E. . The potential difference at the electrodes ae that provides

the pressure necessary for the dimerization is calculated according to the relationship
AE, . =e-Ap, Where AE,__ 1S a potential barrier overcome by the C,, fullerene when it

goes from the well (the area of the tube end) to the position providing the dimer
formation. The strength is calculated as a¢/L, where a distance L is taken to be equal to

the capsule length added to value of 3.4 A (closing the capsule to electrodes by a less
distance may cause sticking due to VVan-der-Waalse interaction).

The energy of the C,, fullerene and parameters of the outer field necessary for the (c,),
dimer synthesis

(Cn )2 Einter (1) ) eV AEinter ’ eV A(P ' V F ! V/m
(Cp0),[2+2] -3.574 5.42 8.90 0.18-10°
(Cog)ll+1] -3.574 6.50 10.16 2.10°




Graphene:
With increasing of the E|ECtrOn properties

number of atoms the

nanoribbon becomes 416
stable (finite size effect) .
420 “1
42,4 — I*\
Eatom, | *\\
eV/atom .
428 — '\‘
BT T T T ]
0 200 400 600 800 1000

Natoms
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Scroll of nanoribbon (finite size effect)
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IP of nhanoribbons
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Energy gap of nanoribbons
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Defected nanoribbons

The dependency of IP on the concentration of defect

IP, eV

The dependency of the energy gap on the concentration of defect

I 0 O I

Egap, eV 0,28 0,14 0,07 0,03
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GRAPHENE:
MECHANICAL
PROPERTIES

Saratov State University, Russia
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Multicsale modeling to investigate the
mechanical properties

Deformations and elastic properties: empirical study

Computational method

The entire system energy is described by the
sum of the binding energy Ey the torsional

energy Eiosand the van der Waals energy

E ‘R-'d“f

Etot =Eb +Etors + Evdw- (1)

In order to study the elastic properties and
deformations of graphene-graphane
nanoribbons we applied the empirical method
based on the bond-order potential developed by
Brenner.

To  describe the
interaction between the
atom and its
environment we
introduce three different
regions in topological
network (see Figure 1).
As shown in Fig.1, there
are near (first), far (third)
and intermediate
(second) regions about
an atom with number |.

Fig. 1. Three different
regions in topological

network of an
structure

atomic

Atoms from the near region are covalently bonded
with the atom i, atoms from other regions are non-
bonded with this atom. The far region has no borders.

Saratov State University, Russia

33



Each pair of covalently bonded atoms interacts
via a potential-energy:

1 Nat
Ep =52 | Z (VR(Tij)—BijVA(TijJ) . (2)
i=1 | j(=)

This is the binding energy. Here V. is the
repulsive pair term, V, is the attractive pair term,
rj is the distance between the atom with number i

and atom j from near region. The function B; is the
many-body term. This term was introduced to
describe the specificity of the o—m interaction. So,
the value of the binding energy depends on the
position and chemical identity of atoms.

Saratov State University, Russia

The torsional potential is given by the formula

1 Nat
=— 2| Z| Z > Viors (mijld] -
il ke, 14,k

2
(3)

E tors

The torsional potential Vigs(jq ) is given as a

function of a dihedral angle w. The torsion angle
ojik] is defined in the usual way as the angle

between the plane defined by the vectors ry and r;
and that defined by r; and r;. Here atoms j and k
are given from intermediate (second) region and
the atom | is given from far region.

34



Van der Waals energy E Van der Waals interaction energy may be described by the
, , , 8Y Evdw Lennard-Jones, Morse, Buckingham potentials and so on. We have
defines the interaction between . .
bonded atoms. implemented and compared Lennard-Jones and Morse potentials as
non ' the functions to define the van der Waals energy. We use Morse
potential that is given by

Nat
Evaw == .Zal[_{il) Vyaw (5 J]- VMorse (Tj) =De((1—ﬂp(—ﬁ(fij ~1,))f —1_]+ E, 'ﬂXP(—B'Tij )
1=1' j(#1 {5}
(4)

where D.is the average bond energy, E; is the repulsion nucleus
energy, p, p' - parameters.
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Study of deformations and elastic properties of
nanoparticles and nanoribbons was implemented
on the following algorithm

1) Optimization of atomic structure by entire system energy minimization on atomic coordinates (the

atomic structure obtained from previous optimization);
2) Tension or compression of the atomic network of nanoribbon and reoptimization of atomic

structure with fixed atoms on the nanoribbon ends;
3) Calculation the Young’s pseudo-modulus for the elastic tension of nanoribbon on 1% on formula:

F L
P DAL

where a deformation force is given by F = % . Here AFE is the strain energy, namely, the total

energy at a given axial strain minus the total.

4) Calculation the Young’s modulus for the elastic tension of nanoribbon on 1% on formula:

F L
Y=l
S AL
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Young’s pseudo-modulus (Y?P) of
nanoribbons. Y3P =Y2P *¥0.34 nm
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Strain energy, eV

Strain energy of nanoribbons
undergoing axial tension

120 -
s
2 f
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- ; f 1
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#
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EI -I F f’ T | | T | | T
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Axial tension

a) Armchair-nanoribbons
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Nanoribbon undergoing axial compression

Nanﬁribbcgl with fixed atoms
on the ends

Atoms on the ends were fixed on the
plates. The plates were moved to wards
each other to decrease the length for
some percent.

compression

Saratov State University, Russia 40



Dependence of strain energy on the
relative compression nanoribbons
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The curve of the strain energy collapse occurs at the axial compression 0.03-
0.04. Plane atomic network undergoing axial compression becomes wave-like.

Compression of an armchair-nanoribbon with the ration L/D=3.22:
0 0.01 0.04 0.05 0.06 0.2 0.35




Plane network undergoing axial
compression becomes wave-like.
This is, so called, a phase
transition.

pyramidalization angles
Op = E{m—"}é
Calculation of density of states
demonstrates absence of changes

in electronic structure.

However, the topology has
nonzero pyramidalization angles.

Amplitude of a wave and its S
period are not constant and
change along axis.

axial compression 0.05
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Dependency of the strain energy on the
relative compression nanoparticles
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THE INFLUENCE OF
A CURVATURE

ON THE PROPERTIES
OF NANORIBBONS

Saratov State University, Russia
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Research of the local stress field of the atomic grid of
graphene nanoribbons and prediction of the
appearance of defects in compression process

A new technique of calculation of the local stress fields of the atomic grid of
graphene nanoribbons has been developed. The equilibrium atomic structure of
nanoribbon till and in deformation process is calculated by the tight-binding
method; the stress field of the atomic skeleton is calculated by the method of atom-
atom Brenner potentials. The magnitude of stress near atom ; is determined m a
difference of the volume densities of energy of the atoms before and after
deformation:

o;=u —u; = Z(-VR(FH)—BHZ{(F&)]JFEL 2. L Z'T’?m(mgmﬂ 2 Vvaw (1 }/p}

FHESD, g=i\ k=i j\I=i j.k J(#0)

*

where the first sum — the binding energy of the atom i with the nearest- neighbor
atoms chemically interacting with the atoms, the second sum — the tc}rsmu energy,
the third sum — the energy of the Van- der-Vaals interaction of the atom i i with the
long-range atoms. Here u,” — the pressure experienced by the atom i in the atomic
grid in absence of deformations, ;: — the atom pressure in the deformable structure,
Wﬁ — the volume occupied by the atom.
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The compression of defected
nanoribbons

The comression process of graphene nanoribbons accompanied by a phase
transition from plane to wave-like atomic grid has been researched. The conditions
of the appearance of defects (atom vacancies) have been established and
dependence of compressibility of nanoribbon from number and distribution
topology of defects has been revealed by the analysis of the calculated local stress

fields.

Nanoribbon compressed by 13%
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The distribution of the local stress in

atomic network
(the compression 20 %)

1-2,4%
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The absorption of H-atom
on the atomic network




The total energy of -

the structure depends on the \ Axial compression 0.1
distance between the ‘
hydrogen atomandthe . || / TTooo--

Axial compression 0.0
carbon atom. s

(The dashed line is the interaction of the
hydrogen atom with planer
graphene nanoribbon; the 4 —

solid line is the interaction of the
hydrogen atom from wave-like
graphene nanoribbon )

0.15 0.2 0.25 0.3 0.35
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THE ELECTRON AND
MECHANICAL
PROPERTIES OF THE
MODIFIED GRAPHENE
NANORIBBONS
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The electron properties
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Egap
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Strain energy, eV
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of graphane-nanostructures

Axial compression

0.30

0.075

0.07

0.063

0.06

Young's pseudo-modulus, TPa -nm

Saratov State University, Russia

0.08

Graphane-nanoparticle

15

2

25 3 35

Length, nm

45

55

-

3



oy~
=

100

Wi

Wi,

T 7]

. .u.”r_ 2w,

~ =
—

|

/i

i

—__—

TN
PRI

| AR

56

Saratov State University, Russia



